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1. Introduction



ITheoreticaI Model of NC in DE/FE Bi-Layer

+¢* Basic Concept of NC in DE/FE Bi-Layer

* Ferroelectrics has a W shape in U versus P curve showing negative capacitance region
* To stabilize negative capacitance behavior, ferroelectric should have heterostructure
with dielectric, now it becomes stable

FE single-layer DE single-layer DE/FE bi-layer
U U

2
U = aP% + BP% + yP% — EPg U= e NC with no hysteresis




2. HfO, based Ferroelectric Thin Films



I Difference Between MFM and MFIM Systems
+*»* Charging capacitor in MFM and MFIM systems

* For MFM capacitor, the polarization of ferroelectric is perfectly compensated by free
carrier of the electrode

MFM System MFIM System

Imperfect compensation of
polarization occurs




I Difference Between MFM and MFIM Systems

\/

**E4o, 8€Neration due to incomplete compensation of FE polarization

* In MFIM system, the charge screening of the polarization is imperfect at the interface
between ferroelectric and dielectric materials, generating the internal field.
* Therefore, there is a finite depolarization field (E,.,) inside of the FE layer.
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I Reversible Single-Domain Ferroelectric (RSFE)

rerials science
Wa

o stabilize and utilize the NC effect, we need to develop a

homogeneously alighed FE phase, such as a single-domain

* In the multi-domain system, the E,, inside the FE layer is significantly reduced
compared to the single-domain case.

e According to the domain switching mechanism, in the absence of a driving force that
re-establishes the initial domain state, the NC effect caused by domain switching
becomes irrecoverable or a one-time phenomena.
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I How to Make an Reversible Single Domain
Ferroelectric Film?

proces?

+*»* High Pressure Post Deposition Annealing (HPPDA)

* To form a CMOS-compatible RSFE-HZO films, HPPDA at 200 atm. were performed in a
forming gas (the mixture of 4% H, and 96% N,).

* FG-HPPDA enables to form a homogeneously alighed domain phase and reversible
domain switching via a strain gradient induced internal field and chemically induced
surface polarization pinning.

HPA Equipment
» Pressure : 1°200atm.
> Gas:N,, FG(H, 4%, N, 96%)
» Temperature : ~ 600°C




Flexoelectric

*** Ferroelectric characteristics can be tuned by the flexoelectricity

* The flexoelectric effect describes an electric field that is generated by a strain gradient.
| €can be large enough that a single-domain forms.
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Flexoelectric Effect in HfO, Ferroelectric Films

*** Ferroelectric characteristics can be tuned by the flexoelectricity

* The flexoelectric effect describes an electric field that is generated by a strain gradient.
E | termal €@N be large enough that a single-domain forms.
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< Thermal Expansion Coefficient [10-5/°C]

Flexoelectric Effect of HPPDA

+»» Estimation of Strain and Strain Gradient for Hafnia by HP PDA

* GIXRD is a powerful tool for determining the depth profile of the in-plane lattice consta
* While the lattice constant averaged over the entire film region can be measured with a
large A,, we obtained information on the value of a near the film surface with a small A..

Six-circle high-resolution GIXRD (HR-GIXRD)
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Surface Effect of FG-HPPDA

+*** Chemically Induced Surface Polarization Pinning

* When H, molecules are adsorbed on the HZO surface, the surface becomes extensively
hydroxylated, which enhances H,-induced vacancy formation.

* The surface hydroxyl groups (OH") can align the polarization direction in the upward

direction.
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I Summary of FG-HPPDA Effects

*+* FG-HPPDA plays a significant role in defining the domain

configurations
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3. Transient NC Effect in RSFE-HZO/AIO Bilayer



I Landau Free Energy Diagrams of Bilayer

* Energy diagram calculated by the landau theory equation of the bi-
layer structure of HZO and AIO with various electrical characteristics.
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I Electrical Characteristics of bilayer in Static

Environment | N -

*» Bilayer with HZO & AIO films shows negligible hysteresis with lower
capacitance density than the AlO layer suggesting that the two layers
work as the normal dielectric layer. RSFE-HZO/AIO Bi-layer
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I Pulse Type Switching Measurement Scheme

s A short pulse type charge-voltage measurement
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I Electrical Characteristics of bilayer in Short

Pulse Meas.

*» Charge Density vs. Voltage and Cap. vs Voltage for bilayer in DC
and pulse type measurement
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I Landau-Ginzburg-Devonshire (LGD) Theory

¢ Fitted lines based on the LGD model is applied to the RSFE-HZO/AIO.

* The high coincidence between theoretical model and experimental results indicates
that such charge boosting effect must be ascribed to the reversible motion of the FE
polarization in the RSFE-HZO layer.
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4. Application : Charge Trap Flash Memory with NC- Effect Blocking Layer




I Motivation

*» Researchers have presented various works regarding high-
performance CTF devices with functional blocking oxide.
** However, performance-improvement limitations still exist.
3D NAND Flash Structure
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I Concept of Negative Capacitance (NC)-CTF

s Capacitor Network in a NC-CTF and It’s Simplified Model.
* NC-CTF is demonstrated by integrating a BL in which the NC effect is stabilized.
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I Concept of NC-CTF Device

¢ Integrating RSFE-HZO/AIO Bilayer as a Blocking Layer (BL)

* Due to the NC effect of RSFE under +V,,, the energy band of RSFE is bent in the
opposite direction to the +V,,,, Wwhich induces significant band bending of the
underlying layers, enhancing the electric field through the tunneling layer (TL).
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I Fabrication of NC-CTFs

* NC-CTFs were fabricated by integrating RSFE-HZO / AlO as the BL

* The fabricated NC-CTF device shows the basic characteristics of a typical CTF device.
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I ISPP characteristics of the NC-CTF device

* Origins of the ISPP Mechanism of the NC-CTF Device

* It shows that the ISPP characteristics of the NC-CTF are influenced by two mechanisms.
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I ISPP characteristics of the NC-CTF device

* Origins of the ISPP Mechanism of the NC-CTF Device

* It shows that the ISPP characteristics of the NC-CTF are influenced by two mechanisms.
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I ISPP characteristics of the NC-CTF device

* Origins of the ISPP Mechanism of the NC-CTF Device

* It shows that the ISPP characteristics of the NC-CTF are influenced by two mechanisms.

A

10 —_ .
NC-CTF = Incremental Step Pulse Programming (ISPP)
8IBL : >
RSFE-HZO/AIO Y
> 5f E AVpem I
< o =0.5V
>4 2| . e
N 2 “H- lO'uS g 5 VRead
B 14 B |>x |
Ot -m-100ns a >
. . e — Ti
% A 10 us ime
1.0 =
) \ o
N N 1 R
\ 35 = —
205 ol '.' D‘D B >° 0.5V X
o ' ;| ]
n |J_'l_'| .' - 8 %\ g E_I_ VRead
S a
0 m =] F W | >
00} il cd'l—l § >~ | ,
a. : : »
\ \ \ A I—; Time
5 10 15 20 25 2 H
Veou [V] =
8
8 AVpey i
G =0.5V [
> o0 0
g § VRead
g >—I-|; I_I \_| S
& >




I NC Effect in the NC-CTF Device

¢ Direct Experimental Evidence of the NC Effect of the RSFE-HZO/AIO Bl
* The ISPP-boosting point coincides with the NC effect of the RSFE-HZO/AIO BL.

10

NC-CTF Memory switching characteristics of a CTF device
8IBL : of
| RSFE-HZO/AIO
> 6l
< af :
S .- 10 > 3f
' &1 >l
of -- 100ns
Lo : "3l 14V or 17V =0 20V
o . 10° 107 105 10° 10°%
o I m \m Pulse Time [s]
3 T |
0.5} (el
& o
5] H o . . .
o F e O :EQ,'\ NC effect of the RSFE-HZO/AIO bilayer with various pulse time
D . D : .
0.0} J : :L 0.25 _ — 7
: NE g 6l ° 100ns
o | RSFE-HZOIAIO BL : 0 020 iy sl S00ns
| 20.15 o
~ 2} o 4'
'5 4} 5 g
= 0 0.10 = 3}
8 © S
c 3} > S sl
s 0.05} g L
S, O QO =
82 0.00 a a a a a a 1 a a a a a
S : 2 4 6 8 10 12 14 2 4 6 8 10 12 14
| . . : . Voltage [V] Voltage [V]

Veeu [V]




IThe Superior ISPP Performance of the NC-CTF

s Comparison of ISPP characteristics of the CTFs with various BLs

* The NC-CTF device can provide a steep ISPP Slope (~1.1) and large memory window
(~8.16 V) in 100ns ISPP operation (high speed).
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ior Performance of the NC-CTF
The comparison was made among the proposed NC-CTF and other

devices with similar structures.
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5. Application : NC-CTF Based IndVlemory Computing




I NC-CTF Based In-Memory Computing

s Local Multiply & Global Accumulate (LM-GA) Array

* Multiply is operated in Multiply-lines (MLs) locally
* Accumulation is operated in Accumulate-lines (ALs) globally
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I Local Multiply by Source-Follower (SF)

*» Local MLs Multiply Input (SL) and Weights by Source-Follower (SF)

* Neural network weights are stored in NC-CTF as V;,,F=V-V,,
* Read time is short because of small capacitance of local MLs
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I Local Multiply by Source-Follower (SF)

*» Local MLs Multiply Input (SL) and Weights by Source-Follower (SF)

* Inthe LM-GA array, the VMM operation was conducted row by row
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I Global Accumulate by Charge-Sharing (CS)

% Global AL accumulates V5P of LM-GA array by charge-sharing

e After multiplication, all NC flash devices are turned off and the MLs becomes floating

* When the SGD is turned on, the cha

sharing
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System-Level Energy Efficiency Evaluation

s System-Level Evaluation Using the DNN+NeuroSIM Framework

* The DNN+NeuroSIM framework based on 28 nm PTM was used.
* To reflect the proposed voltage-sensing MAC operation and local NC-CTF array
structure, we modified the array structure of the DNN+NeuroSIM framework.
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Summary & Comparison of Key Features

* Benchmark Table of In-Memory Computing Performance

* The neural network using the NC-CTF based IMC exhibits excellent computational
efficiency and accuracy

2018 2019 2019 2021 In this Work
ISSCC [1] ISSCC [2] ISSCC [3] VLSI [4]
Device SRAM ReRAM SRAM FeFET NC-CTF
Technology 65 nm 55 nm 55nm - 28 nm
) . . . 3 bit ;
Bit/cell 1 bit 1 bit 1 bit (Feasible) 4 58 bit
F2/bit 130 66 - 12 7.9
Input/weight | g, g, 1/3/4 4/5 1/31/- 1/4.58/6
/ output [bit]
Tops/W x
input bit x 199.7 159.5 367.4 192 407.6
weight bit
Tops/W 3.21 53.17 18.37 66 89
Accuracy - ~89 % 90.42 % - 90.02 %

Source: [1] S. Gonugondla, ISSCC (2018)

[2] C.-X. Xue, ISSCC (2019)

Source: [3] X. Si, ISSCC (2019)
[4] C. Matsui, Symposium on VLSI (2021)




Summary



ISummary

* We successfully developed a CMOS-compatible (reversible domain switching ferroelectric)
HZO film by applying FG-HPPDA to stabilize the NC effect.

* FG-HPPDA generates a homogeneously aligned phase and reversible domain switching by
inducing both a strain gradient induced internal field (flexoelectric effect) and chemically
induced surface polarization pinning (surface effect).

* The homogeneously aligned single-domain with the reversible domain switching of the
RSFE-HZO film enables to induce a stable NC effect.

* An unprecedented strategy of introducing an RSFE-HZO/AIO layer with a stable NC effect as
the BL of CTF memory was presented and the high-performance operation of the NC-CTF
was successfully demonstrated.

* Additionally, we demonstrate energy-efficient, and high-density NC-CTF IMC
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