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Theoretical Model of NC in DE/FE Bi-Layer  
❖Basic Concept of NC in DE/FE Bi-Layer

• Ferroelectrics has a W shape in U versus P curve showing negative capacitance region 
• To stabilize negative capacitance behavior, ferroelectric should have heterostructure 

with dielectric, now it becomes stable
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Difference Between MFM and MFIM Systems
❖Charging capacitor in MFM and MFIM systems 

• For MFM capacitor, the polarization of ferroelectric is perfectly compensated by free 
carrier of the electrode

PFE

PDE

PFE

MFM System MFIM System

𝑬𝒆𝒙𝒕

𝑬𝒆𝒙𝒕
Imperfect compensation of 
polarization occurs
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Difference Between MFM and MFIM Systems
❖Edep generation due to incomplete compensation of FE polarization

• In MFIM system, the charge screening of the polarization is imperfect at the interface 
between ferroelectric and dielectric materials, generating the internal field. 

• Therefore, there is a finite depolarization field (Edep) inside of the FE layer.
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Reversible Single-Domain Ferroelectric (RSFE)
❖To stabilize and utilize the NC effect, we need to develop a 

homogeneously aligned FE phase, such as a single-domain
• In the multi-domain system, the Edep inside the FE layer is significantly reduced 

compared to the single-domain case.
• According to the domain switching mechanism, in the absence of a driving force that 

re-establishes the initial domain state, the NC effect caused by domain switching 
becomes irrecoverable or a one-time phenomena.
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How to Make an Reversible Single Domain 
Ferroelectric  Film?
❖High Pressure Post Deposition Annealing (HPPDA)

• To form a CMOS-compatible RSFE-HZO films, HPPDA at 200 atm. were performed in a 
forming gas (the mixture of 4% H2 and 96% N2).

• FG-HPPDA enables to form a homogeneously aligned domain phase and reversible 
domain switching via a strain gradient induced internal field and chemically induced 
surface polarization pinning.

HPA Equipment
➢ Pressure : 1~200atm.
➢ Gas : N2, FG(H2 4%, N2 96%)
➢ Temperature : ~ 600℃
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Flexoelectric Effect
❖Ferroelectric characteristics can be tuned by the flexoelectricity

• The flexoelectric effect describes an electric field that is generated by a strain gradient.
• EInternal can be large enough that a single-domain forms.

𝐸𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 =
𝑒

4𝜋휀0𝑎
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𝜕𝑧
: strain gradient

Source:  D. Lee, PRL (2011)
Source:  S. Huang, J. Adv. Dielectric. (2018)
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Flexoelectric Effect in HfO2 Ferroelectric Films
❖Ferroelectric characteristics can be tuned by the flexoelectricity

• The flexoelectric effect describes an electric field that is generated by a strain gradient.
• EInternal can be large enough that a single-domain forms.

𝜕𝑢

𝜕𝑧
: strain gradient

Source:  D. Lee, PRL (2011)
Source:  S. Huang, J. Adv. Dielectric. (2018)
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𝜕𝑢
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Flexoelectric Effect of HPPDA 
❖Estimation of Strain and Strain Gradient for Hafnia by HP PDA

• GIXRD is a powerful tool for determining the depth profile of the in-plane lattice constant.
• While the lattice constant averaged over the entire film region can be measured with a 

large λi, we obtained information on the value of a near the film surface with a small λi.

Source:  D. Lee, PRL (2011)
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Surface Effect of FG-HPPDA 
❖Chemically Induced Surface Polarization Pinning

• When H2 molecules are adsorbed on the HZO surface, the surface becomes extensively 
hydroxylated, which enhances H2-induced vacancy formation.

• The surface hydroxyl groups (OH-) can align the polarization direction in the upward 
direction.

Source:  H. Lee, Nano Lett. (2016)

N2-HPPDA FG-HPPDA

N2-HPPDA FG-HPPDA
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Summary of FG-HPPDA Effects
❖FG-HPPDA plays a significant role in defining the domain 

configurations
FG-HPPMA N2-HPPDA FG-HPPDA





Landau Free Energy Diagrams of Bilayer
❖ Energy diagram calculated by the landau theory equation of the bi-

layer structure of HZO and AlO with various electrical characteristics.

-16-

HZO(100Å )

AlO(1Å )/HZO(100Å )

AlO(2Å )/HZO(100Å )

AlO(5Å )/HZO(100Å )

AlO(10Å )/HZO(100Å )

AlO(20Å )/HZO(100Å )

AlO(50Å )/HZO(100Å )

-0.4 -0.2 0.0 0.2 0.4

-20

0

20

40

60

80

100

F
re

e
 e

n
e
rg

y
 [

M
J
/m

2
]

Polarization [C/m2]

𝑼𝑺 = 𝜶𝑷𝑺
𝟐 + 𝜷𝑷𝑺

𝟐 + 𝜸𝑷𝑺
𝟐 − 𝑬𝒆𝒙𝒕𝑷𝑺 − 𝑬 𝑷, 𝝈𝒊 𝒅𝑷

= 𝜶𝑷𝑺
𝟐 + 𝜷𝑷𝑺

𝟐 + 𝜸𝑷𝑺
𝟐 − 𝑬𝒆𝒙𝒕 ∙ 𝑷𝑺 +

𝝈𝒊 ∙ 𝑷𝒔 −
𝟏
𝟐
𝑷𝒔

𝟐

𝜺𝟎 ∙ 𝒍𝑭𝑬
∙
𝜺𝑫𝑬
𝒍𝑫𝑬

+
𝜺𝑭𝑬
𝒍𝑭𝑬

−𝟏



Electrical Characteristics of bilayer in Static 
Environment
❖ Bilayer with HZO & AlO films shows negligible hysteresis with lower 

capacitance density than the AlO layer suggesting that the two layers 

work as the normal dielectric layer.
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Landau-Ginzburg-Devonshire (LGD) Theory
❖ Fitted lines based on the LGD model is applied to the RSFE-HZO/AlO.

• The high coincidence between theoretical model and experimental results indicates 
that such charge boosting effect must be ascribed to the reversible motion of the FE 
polarization in the RSFE-HZO layer.
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Motivation

3D NAND Flash Structure

❖ Researchers have presented various works regarding high-

performance CTF devices with functional blocking oxide.

❖ However, performance-improvement limitations still exist.

Control Gate

Silicon
Tunneling Layer Charge Trap Layer

Blocking Layer
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Source: www.antonis.kaist.ac.kr



❖ Capacitor Network in a NC-CTF and It’s Simplified Model.

• NC-CTF is demonstrated by integrating a BL in which the NC effect is stabilized.
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Concept of Negative Capacitance (NC)-CTF
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❖ Integrating RSFE-HZO/AlO Bilayer as a Blocking Layer (BL)

• Due to the NC effect of RSFE under +VPGM, the energy band of RSFE is bent in the 
opposite direction to the +VPGM, which induces significant band bending of the 
underlying layers, enhancing the electric field through the tunneling layer (TL).
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Concept of NC-CTF Device
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Fabrication of NC-CTFs
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❖ NC-CTFs were fabricated by integrating RSFE-HZO / AlO as the BL

• The fabricated NC-CTF device shows the basic characteristics of a typical CTF device.



❖ Origins of the ISPP Mechanism of the NC-CTF Device

• It shows that the ISPP characteristics of the NC-CTF are influenced by two mechanisms.

-26-

ISPP characteristics of the NC-CTF device
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❖ Origins of the ISPP Mechanism of the NC-CTF Device

• It shows that the ISPP characteristics of the NC-CTF are influenced by two mechanisms.
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ISPP characteristics of the NC-CTF device
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❖ Origins of the ISPP Mechanism of the NC-CTF Device

• It shows that the ISPP characteristics of the NC-CTF are influenced by two mechanisms.
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ISPP characteristics of the NC-CTF device
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❖ Direct Experimental Evidence of the NC Effect of the RSFE-HZO/AlO BL

• The ISPP-boosting point coincides with the NC effect of the RSFE-HZO/AlO BL.

-29-

NC Effect in the NC-CTF Device 
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❖ Comparison of ISPP characteristics of the CTFs with various BLs

• The NC-CTF device can provide a steep ISPP Slope (~1.1) and large memory window 
(~8.16 V) in 100ns ISPP operation (high speed).
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The Superior ISPP Performance of the NC-CTF



❖ The comparison was made among the proposed NC-CTF and other 

devices with similar structures. 
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Superior Performance of the NC-CTF
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❖ Local Multiply & Global Accumulate (LM-GA) Array
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NC-CTF Based In-Memory Computing
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• Multiply is operated in Multiply-lines (MLs) locally
• Accumulation is operated in Accumulate-lines (ALs) globally 

Multiply in
Multiply-lines (MLs)

SL0

SL1

SLn

Input-lines (SLs) are
High if pre-neurons fire

AL0

AL1

AL2

ALn

Accumulate in
Accumulate-lines (ALs)

Multiply-line 
(ML0,0)

Source: C. Matsui, Symposium on VLSI Technology (2021)



❖ Local MLs Multiply Input (SL) and Weights by Source-Follower (SF)

• Neural network weights are stored in NC-CTF as VTH
(SF)=VG-VML

• Read time is short because of small capacitance of local MLs
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SiO2

SiN

AlO

RSFE-HZO

TiN

n+ n+

NC-CTF Device  



❖ Local MLs Multiply Input (SL) and Weights by Source-Follower (SF)

• In the LM-GA array, the VMM operation was conducted row by row 
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Local Multiply by Source-Follower (SF) 

…
…

SGD0 Off

WL0,0 (x0,0) = VREAD

= 0 or 2.5 or 5 V

VSL = 1.6 V

P+ Si

SiO2

SiN

AlO

RSFE-HZO

TiN

n+ n+

VG = VRead

VS = 
1.6 V

VD = VML

ML0,0WL0,7 (x0,7) = VOFF

= -2 V

AL0

Neural network 
input to SL

VML (VD)

Time

Low Vth

High Vth

VML = VG-VTH
(SF)

SGD1 Off

WL1,0 (x1,0) = VREAD

= 0 or 2.5 or 5 V

ML1,0WL1,7 (x1,7) = VOFF

= -2 V



❖ Global AL accumulates VTH
(SF) of LM-GA array by charge-sharing
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Global Accumulate by Charge-Sharing (CS) 

…
…

SGD0 On = 3V

WL0,0 (x0,0) = VOff

= -2 V

SL0

ML0,0WL0,7 (x0,7) = VOFF

= -2 V

AL0

SGD1 On = 3V

WL1,0 (x1,0) = VOff

= -2 V

ML1,0WL1,7 (x1,7) = VOFF

= -2 V
Neural network 
output

Time

…
VAL VML0,0

VML1,0

VML2,0

VMLn,0

𝑽𝑨𝑳𝟎 =
𝑪𝑴𝑳 × 𝜮(𝒊=𝟎,..,𝟏𝟐𝟖)𝑽𝑴𝑳𝒊,𝟎

𝑪𝑨𝑳 + 𝟏𝟐𝟖 × 𝑪𝑴𝑳

• After multiplication, all NC flash devices are turned off and the MLs becomes floating
• When the SGD is turned on, the charge of each ML is transferred to the AL by charge 

sharing



❖ System-Level Evaluation Using the DNN+NeuroSIM Framework
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System-Level Energy Efficiency Evaluation

• The DNN+NeuroSIM framework based on 28 nm PTM was used.
• To reflect the proposed voltage-sensing MAC operation and local NC-CTF array 

structure, we modified the array structure of the DNN+NeuroSIM framework. 
*PTM : Predictive technology model



❖ Benchmark Table of In-Memory Computing Performance

• The neural network using the NC-CTF based IMC exhibits excellent computational 
efficiency and accuracy
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Summary & Comparison of Key Features

Source:  [1] S. Gonugondla, ISSCC (2018)
[2] C.-X. Xue, ISSCC (2019)

[1] [2] [3] [4]

Source:  [3] X. Si, ISSCC (2019)
[4] C. Matsui, Symposium on VLSI (2021)
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Summary

• We successfully developed a CMOS-compatible (reversible domain switching ferroelectric) 
HZO film by applying FG-HPPDA to stabilize the NC effect.

• FG-HPPDA generates a homogeneously aligned phase and reversible domain switching by 
inducing both a strain gradient induced internal field (flexoelectric effect) and chemically 
induced surface polarization pinning (surface effect).

• The homogeneously aligned single-domain with the reversible domain switching of the 
RSFE-HZO film enables to induce a stable NC effect.

• An unprecedented strategy of introducing an RSFE-HZO/AlO layer with a stable NC effect as 
the BL of CTF memory was presented and the high-performance operation of the NC-CTF 
was successfully demonstrated.

• Additionally, we demonstrate energy-efficient, and high-density NC-CTF IMC



Thank you


